Estimation of Greenhouse Gas Emissions and Mitigation Methods in Electrical Power Sector of Dire Dawa City from 2015 to 2025
Solomon Derbie Gont,
Mikias Hailu Kebede
Issue:
Volume 7, Issue 2, June 2018
Pages:
54-59
Received:
21 May 2018
Accepted:
7 June 2018
Published:
29 June 2018
Abstract: This manuscript reviews and compares the results of recent greenhouse gas (GHG) emission life-cycle analyses. Specific attention is paid to fossil energy technologies and renewable energy technologies (RETs). It is therefore desirable for GHG emissions under national, regional and international mitigation policies to be accounted for over its entire life-cycle. The results presented here indicate that the most significant GHG avoidance (in absolute terms) can be made from technology substitution. The introduction of advanced fossil fuel technologies can also lead to improvements in life-cycle GHG emissions. Overall, hydro, nuclear, solar and wind energy technologies can produce electricity with the least life-cycle global warming impact. The advantage of using renewable resources for energy production from conventional resources scarcity and power system reliability point of view is too much. Using renewable resources specially wind and solar are becoming common in developing countries for electrifying the remote and rural areas where grid electrification is economically infeasible. This research work shows an investigation that uses a combination of solar and wind energy as hybrid system (HPS) for electrical generation in Dire Dawa. The generated electricity has been utilized for different purposes. The system has also integrated a diesel generator to be more reliable. This system is not linked with conventional energy. The total energy consumption of each household is 29.44 kWh/day. Measurements included the solar radiation intensity, the ambient temperature and the wind speed was collected from national meteorology agency which was collected for 15 years. To simulate the hybrid power system (HPS) HOMER was used. Emissions and renewable energy generation fraction (RF) of total energy consumption are calculated as the main environmental indicator. The net present cost (NPC) and cost of energy (COE) are calculated for economic evaluation. It is found that, for Dire Dawa climates, the optimum results of HPS show a 93.73% reduction of emissions with 99% of renewable energy fraction.
Abstract: This manuscript reviews and compares the results of recent greenhouse gas (GHG) emission life-cycle analyses. Specific attention is paid to fossil energy technologies and renewable energy technologies (RETs). It is therefore desirable for GHG emissions under national, regional and international mitigation policies to be accounted for over its entir...
Show More
Innovative Solution of the Irrigation System Management Between Aswan and Esna
Hossam Mohamed El Sersawy,
Nadia Mohamed Abdel Salam Eshra,
Mariam Gabr Salem Ali
Issue:
Volume 7, Issue 2, June 2018
Pages:
60-74
Received:
8 July 2018
Accepted:
25 July 2018
Published:
22 August 2018
Abstract: The management of irrigation systems has gained importance over the last five decades due to a tremendous increase in irrigated land in Egypt. Climate change has negative impacts on management of irrigation water resources and agriculture sectors. This paper aims to suggest a strategy to adapt climate changes impacts in water resources irrigation. This could be achieved by use clean energy in irrigation in south of Egypt. There has been a growing realization of possible improvement of water irrigation management for the reach between Aswan High Dam (AHD) to Esna barrage at the south of Egypt. New water irrigation management strategies could provide water to the agricultural land, which facing increasing challenges in locating reliable water supplies for their cultivated land under climate change impacts. The existing irrigation system in this reach depends on usage of more than 82 irrigation pumps stations, which required high capital and energy costs on the east and the west side of the Nile River banks. The objective of this research is eliminated the existing irrigation pump stations on the east side of the riverbank and design a pipeline to convey the water from AHD reservoir (discharge point) to Esna barrage with total length 169 km. The research is carried out through three modules dependent on each other, Remote Sensing (RS) module, Geographic Information System (GIS) module, and hydraulic modeling of the proposed pipeline module. The Modis images were downloaded to develop vegetation map and calculate agriculture area. The total calculated cultivated area was estimated to be 206692 feddan (86810.64 ha) in East side of River Nile at year 2015. The data of irrigation pumps locations were collected. According to collected data, 34 outlets nodes were established to supply the water for different cultivated land zones. The pipeline was designed according to irrigation requirements at the irrigation nodes. Hydraulic modeling of the pipeline was carried out to properly size the pipeline based on its proposed alignment, and future water irrigation demands. The proposed pipeline solution will provide more reliable and less cost-effective strategy to meet future water supply needs and to adapt climate changes impacts in water resources by using clean energy. In additional, the pipeline will provide multiple benefits such as harvest renewable, low-cost electricity and will clearly help reduce energy consumption. The proposed solution needs to meet various requirements of operating authorities to satisfy crop water requirements.
Abstract: The management of irrigation systems has gained importance over the last five decades due to a tremendous increase in irrigated land in Egypt. Climate change has negative impacts on management of irrigation water resources and agriculture sectors. This paper aims to suggest a strategy to adapt climate changes impacts in water resources irrigation. ...
Show More